![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
B. Medicinal Chemistry
1. DEVELOPEMENT OF SMALL-MOLECULE BASED ACTIVATABLE PRODRUG FOR THE DETECTION AND TREATMENT OF LUNG CANCER. Published in JACS 2011, 133, 16680.Design and synthesis of a glutathione activatable fluorescent prodrug for dual targeted imaging and treatment of Lung Cancer. The synthesized new probe consists of the therapeutic drug Doxorubicin and receptor targeting ligand Folate. We discovered that the cytotoxicity and fluorescence property of Doxo are quenched (OFF state) when connected with Folic acid. The probe with the disulfide linker (Figure 1A and 1C, Doxo-S-S-Fol) gets activated (ON state) by the intracellular glutathione (GSH), leading to fluorescence emission (optical imaging) and target-specific cytotoxicity (cancer treatment). In contrast, the non-cleavable probe Doxo-C-C-Fol remains quenched showing no migration to the nucleus and therefore no toxicity to the cancer cells. Results also confirmed that the sustained cytotoxicity of the released Doxo-SH derivative is compared to free Doxo. In our novel design, the folic acid acted as both a targeting ligand for the folate receptor as well as a quencher for doxorubicin’s fluorescence. Finally, the excellent plasma stability of the disulfide linker would make our activatable Doxo-S-S-Fol probe suitable in clinical settings.![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ![]() |
1. MAGNETIC RELAXATION-MEDIATED DETECTION AND ISOLATION OF SINGLE CERCULATING CANCER CELLS IN COMPLEX MEDIA.
Published in JACS 2009, 131, 12780.
Magnetic relaxation technique (using magnetic relaxometer from Bruker, bench-top MRI, 0.47 T) was used to detect single cancer cell from blood circulation, using surface engineered magnetic nanomaterials. Similar techniques were used to trace amount of bacteria and other pathogens in milk. Herein, we study the effect of multivalency on the detection profile of cancer cells and bacteria in complex media, like blood and milk. In these studies, we conjugated folic acid at two different densities (low-folate and high-folate) on polyacrylic-acid-coated iron oxide nanoparticles and studied the interaction of these nanosensors with cancer cells expressing the folate receptor, using confocal microscopy, dynamic light scattering and magnetic relaxation. Results showed that the multivalent high-folate magnetic relaxation nanosensor performed better than its low folate counterpart, achieving single cancer cell detection in blood samples. However, the novel diagnostic typically involves the targeting ligand conjugation to create a sensitive and specific nanosensor that can bind and detect the presence of a target, such as bacterium, cancer cell, protein or a DNA sequence. We anticipate the broader use of our technology in the clinic and in the field, expediting diagnosis and decision-making in cancer.
![]() |
![]() |
Figure. Magnetic relaxation nanosensor-based detection, isolation and treatment of cancer.
2. MAGNETIC NANOSENSOR-MEDIATED DETECTION OF INFECTIOUS DISEASES.
Published in JACS 2011, 133, 3668, Bioconjugate Chemistry, 2011, 22, 307, PLoS One 2012, 7, e35326.
Organic chemistry-based, surface engineered magnetic resonance nanosensors (MRnS) were used for the first time to detect cholera toxins, Anthrax Lethal Factors, pathogens for crohn’s and jones diseases, MAP bacteria and other infectious diseases. These works highlighted all over the USA through the NIH and other websites and multiple media channels. Bacterial infections are still a major global healthcare problem. The quick and sensitive detection of pathogens responsible for these infections would facilitate correct diagnosis of the disease and expedite treatment. Of major importance are intracellular slow-growing pathogens that reside within peripheral leukocytes, evading recognition by the immune system and detection by traditional culture methods. Herein, we report the use of hybridizing magnetic nanosensors (hMRS) for the detection of an intracellular pathogen, Mycobacterium avium spp. paratuberculosis (MAP). The hMRS with unique genomic sequence, acting as proximity magnetic relaxation nanosensors, resulting in an increase in magnetic relaxation of surrounding water molecules upon hMRS binding to their target. Demonstrated that the change in magnetic relaxation is associated with the interaction of the nanoparticles with ligands. MRnS induce large increases in the relaxation signal upon binding to a target, whereas when the target promotes nanoparticle clustering the signal decreases. This technology was also used to target, isolate and treatment of Cholera toxin B-subunits, employing molecular mimicry, robust ganglioside-resembling iron oxide nanoparticles, via changes in spin-spin relaxation times (ΔΤ2) and achieved detection sensitivity in the low picomolar regime (40 pM).
![]() |
![]() |
Figure.
Oxidase-like activity of synthesized nanoceria. Effective oxidation of organic dyes in acidic media without using any oxidizing agents. Comparison between traditional ELISA and nanoceria-based ELISA: In our nanoceria-based ELISA, the oxidase activity of nanoceria facilitates the direct oxidation of TMB without the need of HRP or H2O2.2.NANOCERIA-BASED MEDICAL DEVICE FOR THE DETECTION OF CHRONIC INFLAMMATIONS AND CANCER BIOMAKERS VIA OPTICAL AND MR IMAGING.
Published in Nanoscale 2012, 4, 2117. Analytical Chemistry 2011, 83, 2547.
We have developed a nanoceria-based device that can detect abnormal levels of hydrogen peroxide and micro-environmental alterations through changes in the device’s fluorescence and magnetic resonance signals. Considering that nanoceria can sequester other forms of ROS, such as superoxide and nitroxyl radicals, the device can potentially sense a plethora of inflammatory mediators, other than hydrogen peroxide. For medical applications, this system can be utilized as a standalone implantable device or prosthetic equipment’s component. For instance, it can have applications in a broad range of ailments with a pro-inflammatory component, including inflammatory bowel disease, ulcerative colitis, cystic fibrosis, sepsis, cardiovascular disease, arthritis, multiple sclerosis and Alzheimer’s. Furthermore, as acidosis and ROS interfere with cancer chemotherapy, the device can be utilized as an implant in cancer therapeutic regimes. Additionally, patients with transplants or prosthetic apparatuses may utilize the nanoceria-based device for the in vivo monitoring of the post-operative inflammatory response, as the device can be further miniaturized and integrated to the prosthetic organ.
![]() |
![]() |